
8 • VIRUS BULLETIN NOVEMBER 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Let free(dom) Ring!
Frédéric Perriot and Péter Ször

Symantec Security Response, USA

On 30 July, 2002 a security advisory from A.L. Digital Ltd
and The Bunker disclosed four critical vulnerabilities in the
OpenSSL package. OpenSSL is a free implementation of the
Secure Socket Layer protocol used to secure network
communications and it provides cryptographic primitives to
many popular software packages, including the Apache web
server. Less than two months later, the Linux/Slapper worm
successfully exploited one of the buffer overflows described
in the advisory and, in a matter of days, spread to thousands
of machines around the world.

Linux/Slapper is one of the most significant outbreaks on
Linux systems to date. Although the worm has the potential
to infect many more machines, it skips private network
classes such as 192.168.0.0/16 intentionally and thus it will
not spread on local networks. Slapper shows many similari-
ties with the FreeBSD/Scalper worm, hence the name.

Under Attack

Linux/Slapper spreads to Linux machines by exploiting the
overlong SSL2 key argument buffer overflow in the libssl
library that is used by the mod_ssl module of Apache 1.3
web servers. When attacking a machine, the worm attempts
to fingerprint the system by sending an invalid GET request
to the http port (port 80), in anticipation that Apache will
return its version number as well as the Linux distribution it
was compiled on, along with an error status.

The worm contains a hard-coded list of 23 architectures
upon which it was tested and compares the returned version
number against this list. It uses this version information
later to tune the attack parameters. If Apache is configured
not to return its version number or the version is unknown
to the worm, it will select a default architecture (Apache
1.3.23 on RedHat) and the ‘magic’ value associated with it.

This ‘magic’ value is very important for the worm and is the
address of the GOT (Global Offset Table) entry of the free()
library function. GOT entries of ELF files are the equivalent
of IAT (Import Address Table) entries of Windows PE files.
They hold the addresses of the library functions to call. The
address of each function is placed into the GOT entries
when the system loader maps the image for execution.
Slapper’s aim is to hijack the free() library function calls in
order to run its own shell code on the remote machine.

The Buffer Overflow

In the past, some worms have exploited stack-based buffer
overflows. Stack-based overflows are the low-hanging fruits

compared to second-generation overflows exploiting heap
structures. Since the OpenSSL vulnerability affected a
heap-allocated structure, the worm’s author had to deal with
a lot of minor details in order to get the attack right for
most systems. Thus, exploitation of the vulnerability was
not a trivial process.

When Apache is compiled and configured to use SSL it
listens on port https (port 443). Slapper opens a connection
to this port and initiates an SSLv2 handshake. It sends a
client ‘hello’ message advertising eight different ciphers
(although the worm supports only one, namely RC4 128-bit
with MD5) and gets the server’s certificate in reply. Then it
sends the client master key and the key argument, specify-
ing a key argument length greater than the maximum
allowed SSL_MAX_KEY_ARG_LENGTH (8 bytes).

When the packet data is parsed in the
get_client_master_key() function of libssl on the server, the
code does no boundary check on the key argument length
and copies it to a fixed-length buffer key_arg[] of size
SSL_MAX_KEY_ARG_LENGTH, in a heap-allocated
SSL_SESSION structure. Thus anything following
key_arg[] can be overwritten with arbitrary bytes. This
includes both the elements after key_arg[] in the
SSL_SESSION structure and the heap management data
following the memory block containing the structure.

The manipulation of the elements in the SSL_SESSION
structure is crucial to the success of the buffer overflow.
The author of the exploit took great care to overwrite
these fields in a way that does not affect the SSL handshake
very much.

Double-take

Interestingly, instead of using this overflow mechanism just
once, the worm uses it twice, first to locate the heap in the
Apache process address space, and again to inject its attack
buffer and shell code. There are two good reasons for
splitting the exploit into two phases.

First, the attack buffer must contain the absolute address
of the shell code, which is hardly predictable across
all servers because the shell code is placed in memory
allocated dynamically on the heap. To overcome this
problem the worm causes the server to leak the address
where the shell code will end up and then sends an attack
buffer patched accordingly.

The second reason is that the exploit necessitates
overwriting the cipher field of the SSL_SESSION structure
located after the unchecked key_arg[] buffer. This field
identifies the cipher to use during the secure communica-
tion and if its value were lost the session would come to an
end too quickly. So the worm collects the value of this field

VIRUS ANALYSIS 1

VIRUS BULLETIN NOVEMBER 2002 • 9

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

during the first phase and then injects it back at the
right location in the SSL_SESSION structure during
the second phase.

This two-phased approach requires two separate connec-
tions to the server and succeeds only because Apache 1.3 is
a process-based server (as opposed to a thread-based
server). The children spawned by Apache to handle the two
successive connections will inherit the same heap layout
from their parent process. Thus, all other things being
equal, the structures allocated on the heap will end up at the
same addresses during both connections.

This assumes that two fresh ‘identical twin’ processes are
spawned by Apache to handle the two connections. How-
ever, under normal conditions, this may not always be the
case because Apache maintains a pool of servers already
running, waiting for requests to handle. In order to force
Apache to create two fresh processes, the worm exhausts
Apache’s pool of servers before attacking by opening a
succession of 20 connections at 100-millisecond intervals.

The first use of the buffer overflow by the worm causes
OpenSSL to reveal the location of the heap. It does this by
overflowing the key_arg[] buffer by 56 bytes, up to the
session_id_length field in the SSL_SESSION structure. The
session_id_length describes the length of the 32-byte-long
session_id[] buffer located after it in the SSL_SESSION
structure. The worm overwrites the session_id_length with
the value 0x70 (112). Then the SSL conversation continues
normally until the worm sends a ‘client finished’ message to
the server, indicating it wants to terminate the connection.

Upon receipt of the ‘client finished’ message, the server
replies with a ‘server finished’ message including the
session_id[] data. Once again, no boundary check is
performed on the session_id_length and the server sends
not only the content of the session_id[] buffer but the whole
112 bytes of the SSL_SESSION structure starting at
session_id[]. Among other things this includes a field called
‘ciphers’ that points to the structure allocated on the heap
right after the SSL_SESSION structure, where the shell
code will go, and a field called ‘cipher’ that identifies the
encryption method to use.

The worm extracts the two heap addresses from the
session_id data received from the server and places them in
its attack buffer. The TCP port of the attacker’s end of the
connection is also patched into the attack buffer for the
shell code to use later. The worm then performs the second
SSL handshake and triggers the buffer overflow again.

Abusing the glibc

The second use of the buffer overflow is much more subtle
than the first. It can be seen as three steps leading to the
execution of the shell code: (1) corrupting the heap manage-
ment data, (2) abusing the free() library call to patch an
arbitrary dword in memory, which is going to be the GOT
entry of free() itself, and (3) causing free() to be called

again, this time to redirect control to the shell code location.

The attack buffer used in the second overflow is composed
of three parts: the items to be placed in the SSL_SESSION
structure after the key_arg[] buffer, 24 bytes of specially
crafted data, and 124 bytes of shell code.

When the buffer overflow takes place, all members of the
SSL_SESSION structure after the key_arg[] buffer are
overwritten. The numeric fields are filled with ‘A’ bytes and
the pointer fields are set to NULL, except the cipher field
which is restored to the value that was leaked during the
first phase.

The 24 bytes of memory following the SSL_SESSION
structure are overwritten with fake heap management data.
The glibc allocation routines maintain so-called ‘boundary
tags’ in between memory blocks for management purposes.
Each tag consists of the sizes of the memory blocks before
and after it plus one bit indicating whether the block before
it is in use or available (the PREV_IN_USE bit). Addition-
ally, free blocks are kept in doubly linked lists formed by
forward and backward pointers maintained in the free
blocks themselves.

The fake heap management data injected by the worm after
the SSL_SESSION structure poses as a minimal-sized
unallocated block, containing just the forward and back-
ward pointers set respectively to the address of the GOT
entry of free() minus 12 and the address of the shell code.
The address of the GOT entry is the ‘magic’ value deter-
mined by fingerprinting, and the address of the shell code is
the value of the ciphers field leaked by OpenSSL in the first
phase of the attack, plus 16 to account for the size of the
fake block content and trailing boundary tag.

Once these conditions have been set up on the server, the
worm sends a ‘client finished’ message specifying a bogus
connection id. This causes the server to abort the session
and attempt to free the memory associated with it. The
SSL_SESSION_free() function of the OpenSSL library is
invoked and this in turn calls the glibc free() function with a
pointer to the modified SSL_SESSION structure as an
argument.

One might think that freeing memory is a simple task. In
fact, considerable book-keeping is performed by free()
when a memory block is released. Among other tasks free()
takes care of consolidating blocks, merging contiguous free
blocks into one to avoid fragmentation. The consolidation
operation uses the forward and backward pointers to
manipulate the linked lists of free blocks, and trusts these to
be pointing to heap memory (at least in the release build).

The exploit takes advantage of the forward consolidation of
the SSL_SESSION memory block with the fake block
created after it by setting the PREV_IN_USE bits of the
boundary tags appropriately. The forward pointer in the
fake block which points to the GOT is treated as a pointer
to a block header, dereferenced, and the value of the
backward pointer (the shell code address) is written to

10 • VIRUS BULLETIN NOVEMBER 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

offset 12 of the header. Thus the shell code address ends up
in the GOT entry of free().

It is worth noting that the fake backward pointer is also
dereferenced, so the beginning of the shell code is treated as
a block header, and patched at offset 8 with the value of the
fake forward pointer. To avoid corruption of the shell code
during this operation, the shell code will start with a short
jump followed by ten unused bytes filled with NOP-s.

Finally, on the next call to free() by the server, the modified
address in the GOT entry of free() is used and the control
flow is directed to the shell code.

Shell Code and Infection

When the shell code is executed it searches first for the
socket of the TCP connection with the attacking machine. It
does this by cycling through all file descriptors and issuing
a getpeername() call on each until the call succeeds and
indicates that the peer TCP port is the one that was patched
into the shell code. Then it duplicates the socket descriptor
to the standard input, output and error.

Next it attempts to gain root privilege by calling setresuid()
with UIDs all set to zero. Apache usually starts running as
root and then switches to the identity of an unprivileged
user ‘apache’ using the setuid() function. Thus the
setresuid() call will fail because, unlike the seteuid()
function, setuid() is irreversible. The author of the shell
code appears to have overlooked this fact, but the worm
does not need root privileges to spread, since it writes only
to the /tmp folder.

Finally, a standard shell ‘/bin/sh’ is executed with an
execve() system call. A few shell commands are issued
by the attacker worm to upload itself to the server in
uuencoded form, and to decode, compile and execute itself.
The recompilation of the source on various platforms makes
the identification of the worm in binary form a little more
difficult. The operations are carreid out in the /tmp folder
where the worm files reside under the names .uubugtraq,
.bugtraq.c and .bugtraq (notice the leading dots to hide the
files from a simple ‘ls’ command).

Now you see me, Now you don’t!

Since the worm hijacks an SSL connection to send itself, it
is legitimate to wonder whether it travels on the network in
encrypted form. This question is particularly crucial for
authors of IDS systems that rely on detecting signatures in
raw packets.

Fortunately, the buffer overflow occurs early enough in the
SSL handshake, before the socket is used in encrypted
mode, thus the attack buffer and the shell code are clear on
the wire. Later, the same socket is used to transmit the shell
commands and the uuencoded worm also in plain text. The
‘server verify’, ‘client finished’ and ‘server finished’ packets
are the only encrypted traffic but they are not particularly
relevant for detection purposes.

P2P

When an instance of the worm is executed on a new
machine it binds to port 2002/UDP and becomes part of a
peer-to-peer network. Notice that, although a vulnerable
machine can be hit multiple times and exploited again, the
binding to port 2002 prevents multiple copies of the worm
from running at the same time.

The parent of the worm (on the attacking machine) sends to
its offspring the list of all hosts on the peer-to-peer network
and broadcasts the address of the new instance worm to the
network. Then periodic updates to the hosts list are ex-
changed between the machines on the network. The new
instance of the worm also starts scanning the network for
other vulnerable machines, sweeping randomly chosen
Class B-sized networks.

The protocol used in the peer-to-peer network is built on
top of UDP and provides reliability through the use of
checksums, sequence numbers and acknowledgement
packets. The code has been taken from an earlier tool and
each worm instance acts as a DDoS agent and a backdoor.
Much has been written on this topic so we won’t repeat
information that is available elsewhere.

Conclusion

Linux/Slapper is an interesting patchwork of a DDoS agent,
some functions taken straight from the OpenSSL source
code and a shell code the author says is not his own. All this
glued together results in a fair amount of code, not easy to
figure out rapidly. Like FreeBSD/Scalper, most of the worm
was probably already written when the exploit became
available and, for the author, it was just a matter of integrat-
ing the exploit as an independent component.

And, as in Scalper, which exploited the BSD memcpy()
implementation, the target of the exploit is not just an
application but a combination of an application and the
runtime library underneath it. One would expect memcpy()
and free() to behave a certain way, consistent with one’s
everyday-programming experience. But when used in an
unusual state or passed invalid parameters, they behave
erratically.

Linux/Slapper shows that Linux machines can become the
target of widespread worms just as easily as Windows
machines do. For those with Slapper-infected Linux servers
this will be a day to remember.

Name: Linux/Slapper

Alias: Apache_mod_ssl.

Type: C sources based worm that compiles

itself to ELF; performs DDoS attacks;

spreads via buffer overflow attacks

against vulnerable versions of

OpenSSL.

